The Jensen-Mercer Inequality with Infinite Convex Combinations
نویسندگان
چکیده
منابع مشابه
On a Variant of the Jensen–mercer Inequality for Operators
Some refinements of the Jensen-Mercer inequality for operators are presented. Obtained results are used to refine some comparision inequalities between power and quasiarithmetic means for operators. Mathematics subject classification (2000): 47A63, 47A64.
متن کاملBounds for the Normalized Jensen – Mercer Functional
We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...
متن کاملOn the Jensen-Steffensen inequality for generalized convex functions
Jensen–Steffensen type inequalities for P -convex functions and functions with nondecreasing increments are presented. The obtained results are used to prove a generalization of Čebyšev’s inequality and several variants of Hölder’s inequality with weights satisfying the conditions as in the Jensen–Steffensen inequality. A few well-known inequalities for quasi-arithmetic means are generalized.
متن کاملJensen Inequality with Subdifferential for Sugeno Integral
The classical Jensen inequality for concave function φ is adapted for the Sugeno integral using the notion of the subdifferential. Some examples in the framework of the Lebesgue measure to illustrate the results are presented.
متن کاملA Converse of the Jensen Inequality for Convex Mappings of Several Variables and Applications
In this paper we point out a converse result of the celebrated Jensen inequality for differentiable convex mappings of several variables and apply it to counterpart well-known analytic inequalities. Applications to Shannon’s and Rényi’s entropy mappings are also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Sciences and Applications E-Notes
سال: 2019
ISSN: 2147-6268
DOI: 10.36753/mathenot.559241